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•  Introduction and Motivation 



 
 

The IOTA ring : a test bed for first-principles accelerator 
science, nonlinear dynamics, & space charge mitigation. 
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•  Integrable Optics Test Accelerator (IOTA) 

S.Nagaitsev, IOTA Program 26 

Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes

0.5 1.0

0.5

1.0

νx

νy

A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

- Novel accelerator physics:  strongly nonlinear design 
- Experimental test bed for SC mitigation schemes 
- Run first with electrons, then low-energy protons 

nonlinear magnetic insert 

Fermilab 

•  Nonlinearity     tune spread “washes out” coherent space charge instabilities 
•  Integrability     ensures orbits are regular and remain bounded (no chaos)  

S. Antipov et al, Journal of Instrumentation 12, T03002 (2017); 
V. Danilov and S. Nagaitsev, Phys Rev Accel Beams 13, 084002 (2010)  

•  βx = βy , D = 0 across the nonlinear drift space 
•  nπ phase advance from nonlinear drift space 
       exit to nonlinear drift space entrance  
 

drift space for  
nonlinear insert 
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•  βx = βy , D = 0 across the nonlinear drift space 
•  nπ phase advance from nonlinear drift space 
       exit to nonlinear drift space entrance  
 

drift space for  
nonlinear insert 

- Integrability holds for on-energy orbits in the two transverse degrees of freedom. 
- After a linear canonical transformation (Courant-Snyder), dynamics is equivalent to     
a nonlinear s-independent Hamiltonian system with 2 invariants of motion:  H, I. 



 
 

Basic Properties of the IOTA Nonlinear Potential 
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The potential (for the ideal integrable system in normalized coordinates) takes the form (-1/2 < τ < 0): 

F (z) =
zp

1� z2
arcsin(z)

V (x, y) =
1

2
(x2 + y

2)� ⌧ReF (x+ iy) . 

1)  Singular points occur at (1,0) and (-1,0), where V diverges. 
2)  V is smooth on the plane minus the set of points with y=0, |x|≥1 (branch cuts). 
3)  V is continuous everywhere except at the singular points.  (This includes the branch cuts). 
4)  V is symmetric under reflection about either the x or y axis. 

1 global 
minimum 

4 saddle 
points 

V

Potential 
shown for 
⌧ = �0.4



 
 

Motivation for studying the geometry of integrable 
dynamics in IOTA 
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•  While the dynamics of an integrable system is simple in action-angle variables, a general 
integrable system cannot be described using a global set of action-angle variables.  There may 
be several systems of local action-angle coordinates, with separatrices, fixed points, etc.   

 
•  We want to obtain as much information about the dynamics as possible without knowledge of 

any local sets of action-angle variables (which we may not know/are difficult to obtain). 

•  Geometric methods from the theory of dynamical systems provide a global view of the 
integrable dynamics and can be applied knowing only the invariants of motion. 

•  An improved understanding of the integrable dynamics---including stable and unstable fixed 
points, unstable periodic orbits, and phase space separatrices---might allow one to search 
experimentally for some of these dynamical behaviors. 

 
•  Studies of dynamic aperture in the presence of a perturbation (non-integer tune advance in 

the arc) suggest that the dynamic aperture is intimately connected with the geometry of 
orbits in the ideal integrable system.   
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•  Momentum Mapping of an Integrable Hamiltonian System 



 
 

Geometry of the Regular Level Sets of an Integrable 
Hamiltonian System 
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Liouville-Arnold Theorem 

Suppose H is a time-independent Hamiltonian for an n degree-of-freedom system, 
 and H = f1, f2, ..., fn are n smooth functions on the phase space M such that: 

         The motion is confined to a set                                                                                . 

rf1, . . . ,rfn are linearly independent 1) 

{fi, fj} = 0 (i, j = 1, . . . , n) (the fj are in involution) 2) 

Mz = {p 2 M |fi(p) = zi, i = 1, . . . , n}
If Mz is compact and connected, then Mz is diffeomorphic to the n-torus. 

(the fj are independent) 

smooth coordinate 
transformation 

linear 
flow 

=)
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variables 
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What happens on level sets where condition 1) fails? 
 
These level sets are degenerate, and contain the 
most interesting orbits of the system (eg, separatrices). 



 
 

Concept of the Momentum Mapping and Its Critical Points 

13 A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems:  Geometry, Topology, Classification, Chapman & Hall/CRC Press,  NY, 2004;  Section 1.7. 

Suppose H is an integrable Hamiltonian for an n degree-of-freedom system on a phase space M, 
and suppose H = f1,..,fn denote its n invariants of motion (independent a.e. and in involution).    

The momentum mapping is the smooth map given by: 

F : M ! Rn F(p) = (f1(p), . . . , fn(p)), p 2 M

A point p in M is a critical point of the momentum mapping if: 
 
If p is a critical point, its image             in        is called a critical value.    
 
The set of all critical values of the momentum mapping is called the bifurcation diagram.  

F(p) Rn

[DF(p)]jk =
@fj

@xk

At a point p = (x1,...,x2n) in the phase space, the Jacobian matrix of        is given by:  F

(j = 1, . . . , n, k = 1, . . . , 2n)

rank(DF(p)) < n

•  The (critical) level sets of      , corresponding to critical values, give unusual (degenerate) tori. 
•  All other (regular) level sets of     give the smooth n-tori of the Liouville-Arnold theorem. 

F
F



 
 

Prototypical Example:  The Nonlinear Pendulum 

In this simple case, n=1, we have a single invariant f1=H, and the momentum mapping is: 

, F(�, p) = H(�, p) =
p2

2

� cos�F : S1 ⇥ R ! R
Bifurcation 
diagram: 

-1 

+1 

H

Critical points:  where 

p = 0, � = n⇡, n 2 Z

DF(�, p) = (sin�, p)

DF = 0

Jacobian matrix: 

Critical values: H = �1,+1

In this case, the critical points are the fixed points. 
Critical level sets are the origin (H = -1) and the 
separatrix (H = +1). 

. 

critical level 
sets 

regular 
level sets 

-π π ϕ

�

0

Phase space 
(cylinder) 



 
 

Application to the Ideal Integrable Dynamics in IOTA  
(Shown for τ = -0.4) 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
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H

I

1 

2 

3 
4 

Bifurcation diagram showing critical values of (H,I) 

Note four distinct regions. 
 
Level sets within these four  
regions differ qualitatively. 
 
Points on the boundaries  
correspond to critical level sets 
(fixed points, separatrices, etc.) 
 
Large dots indicate where these 
boundary curves split. 

1) one simply-connected component containing the origin,   2) four distinct components 
3) one component with a hole that excludes the origin,         4) empty (not allowed) 
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I =
2H



 
 

Examples of Regular Level Sets (τ = -0.4): 
Projections into the (X,Y) Plane 
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(H, I) = (0.3, 0.3) (H, I) = (0.6, 1.3) (H, I) = (0.8, 2.0)

(H, I) = (0.5, 1.5)

2 3 

4 More interesting are the boundary cases, corresponding 
to critical values of (H,I), where transitions occur. 
 
We will see many more examples in what follows. 
 
Here it is simplest to visualize the level sets using 
projection onto the transverse (X,Y) plane. 



 
 

Network of Critical Initial Conditions in the (X,Y) Plane 
Shown for Px=Py=0 (with τ = -0.4) 
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5

1.0

x

y

We show all points in the plane (x,y) 
such that the initial condition (x,0,y,0) 
lies on a critical level set.  
 
These curves naturally divide the 
plane into regions with qualitatively 
distinct dynamical behavior. 

Black point:  stable fixed point 
 
Blue points:  4 saddle points 
 
Green points:  singular points 
 
Red and black curves correspond to 
the red and black curves in the 
bifurcation diagram.  
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•  Classification of Integrable Orbits:  A Visual Tour 



 
 

Classification of Orbits Initialized in the (X,Y) Plane  
with Px=Py=0 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5
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x
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•  Orbits move over level sets 
      containing the origin. 

•  Stable periodic orbits occur for initial 
      conditions on the black curves. 
 
•  A fixed point occurs at the origin. 

For initial conditions in 
the highlighted region: 



 
 

Classification of Orbits Initialized in the (X,Y) Plane  
with Px=Py=0 
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•  Orbits “bounce” across the Y axis 
      within level sets confined above  
      (or below) the midplane. 

•  Periodic orbits occur for initial 
      conditions on the black arcs 
      (midplane unstable, others stable). 
 
•  A fixed point occurs at the blue 
      dots (saddle).  The singular point 
      is in green. 

For initial conditions in 
the highlighted region: 



 
 

Classification of Orbits Initialized in the (X,Y) Plane  
with Px=Py=0 
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•  Orbits move back and forth across 
      the X axis within level sets confined  
      to the right (or left) half-plane. 
 
•  Periodic orbits occur for initial 
      conditions on the black arcs (some 
      stable, some unstable). 
 
•  A fixed point occurs at the blue 
      dot (saddle).  The singular point 
      is in green. 

For initial conditions in 
the highlighted region: 



 
 

initial condition on the y-axis: 
periodic orbit confined to the y-axis 
(degenerate line segment) 
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(x, y) = (0.2, 0.3)

orbit fills a 
rectangle 
of increasing 
horizontal 
size 

initial condition lies on the corner of the shaded region 

Scan of initial conditions 
in X-Y (starting from rest) 



 
 

initial condition on the red arc: 
level set splits along midplane, & 
2 small islands appear 
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four components 
 
orbit lies in the 
component 
above the  
midplane 
 
“bouncing orbit” 

(x, y) = (0.40375, 0.3)

initial condition is approaching the red arc 
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two visible components shrink in the 
vertical direction 
 
initial condition approaches the black arc 

components 
increase in size 
after crossing 
the black arc 

initial condition lies on the black arc: 
degenerate curves (periodic orbit) 



 
 

Now we fix X and begin to decrease Y, moving 
downward toward the midplane. 
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periodic orbit 
in the midplane 

visible components increase in vertical size 
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•  Dynamic Aperture in the Presence of a Perturbation 



 
 

IOTA ideal lattice plus tune advance error – dynamic aperture with 
increasing tune error (Frequency Map Analysis) 

28 

~8K distinct initial conditions (x,0,y,0) in a disk, 2048 turns.  Particles are lost if R > 2.83 cm. 

tune diffusion 
tune diffusion 

Limited primarily by 
horizontal aperture. 
 
DA shrinks with 
increasing tune error. 

Singular points 
are located at: 

� =
q

�⌫2
x

+�⌫2
y

Measure of tune 
diffusion: 

log(�)

NL Insert parameters:   
L = 1.8 m,  τ = -0.40,  
c = 0.01 m1/2, ν = 0.303 

(±1.38, 0) cm

integrable 

µ=0.0 

Y

X

µ=0.02 

chaos 

Y

X

µ=0.04 

Y

X

µ=0.06 
Y

X

K. Hwang et al, “Chaos Indicators for Studying Dynamic Aperture in the IOTA Ring with Protons,” WEPTS078, IPAC 2019. 



 
 

Boundary of the dynamic aperture for small tune error is well-
described by the primary separatrix of integrable motion 

29 

Red arcs:  primary 
separatrix, I = 2H  

NL Insert parameters:   
L = 1.8 m,  various τ, 
c = 0.01 m1/2, ν = 0.3 
 
Tune advance error: 
µ = 0.01 in each case 

Comparison for 
several values of 
insert strength. 

Innermost chaotic 
orbits coincide with 
the separatrix. 

τ = -0.2 τ = -0.3 

τ = -0.4 τ = -0.45 



 
 

IOTA ring with 0.03 space charge tune depression –  
dynamic aperture (Frequency Map Analysis) 

30 

tune diffusion 

- 8K distinct initial conditions (x,0,y,0) in a disk, 2048 turns.  Particles are lost if R > 2.83 cm. 
- Note the large beam tune spread (beam is stable despite crossing many low-order resonances). 
- Evidence of diffusion in the beam core.  Test particles with y=0 outside the beam are lost.  

Singular points 
are located at: 

� =
q

�⌫2
x

+�⌫2
y

Measure of tune 
diffusion: 

log(�)(±1.38, 0) cm

beam 
boundary 

Dynamic aperture 

tune diffusion 

Beam core tune footprint 

y 

x 



 
 

IOTA ring with 0.03 space charge tune depression –  
dynamic aperture (Frequency Map Analysis) 

31 
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- 8K distinct initial conditions (x,0,y,0) in a disk, 2048 turns.  Particles are lost if R > 2.83 cm. 
- Note the large beam tune spread (beam is stable despite crossing many low-order resonances). 
- Evidence of diffusion in the beam core.  Test particles with y=0 outside the beam are lost.  
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x 



 
 

Conclusions 

32 

•  General techniques exist for finding critical points—including fixed points, separatrices, and 
unstable periodic orbits—of integrable Hamiltonian systems.  These were applied to study the 
ideal dynamics in the IOTA nonlinear integrable optics experiment. 

 
•  The unique structure of the nonlinear potential allows for unusual orbits—for example, orbits 

that are confined to the upper half-plane, bouncing off of a potential barrier in the midplane. 
 
•  The system has 5 fixed points and several families of periodic orbits.  The global behavior of 
      the level sets is well-illustrated by using a bifurcation diagram.  The network of critical initial       
      conditions in the (X,Y) plane gives a global picture of orbit behavior. 
       
•  The boundary between “bouncing” and ordinary orbits lies at I=2H (primary separatrix).  This 

separatrix coincides with the inner boundary of stable dynamic aperture when the integrable 
system is subject to a small perturbation in tune advance. 

 
•  This behavior appears to persist when we consider the dynamic aperture of a population of test 

particles moving in the potential of the beam core, for small space charge tune shift. 
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•  Backup Material 



 
 

Application to the Ideal Integrable Dynamics in IOTA 

In the case of IOTA, the momentum mapping is given explicitly by (here z = x+iy): 

F(x, p
x

, y, p
y

) = (H(x, p
x

, y, p
y

), I(x, p
x

, y, p
y

))F : R4 ! R2

Critical points occur where any of the following (equivalent) conditions is satisfied: 

{rH,rI}
dH ^ dI = 0

•  Finding these points requires searching for the zeros of one or more functions of 4 variables. 
•  This is numerically challenging, but with effort this can be done using, eg, Mathematica.  

H =
1

2
(p2

x

+ p2
y

+ x2 + y2)� ⌧U(x, y)

I = (xp
y

� yp

x

)2 + p

2
x

+ x

2 � ⌧W (x, y)

U = Re

✓
zp

1� z2
arcsin(z)

◆

W = Re

✓
z + z̄p
1� z2

arcsin(z)

◆
, 

, 

rank(DF) < 2

det(DF)T (DF) = 0

fails to be linearly independent 

, 

1) 

2) 

3) 

4) 

, 



 
 

IOTA Bifurcation Diagram:  Dependence on  
Nonlinear Insert Strength 
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Network of Critical Initial Conditions in the (X,Y) Plane: 
Dependence on Nonlinear Insert Strength 
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The IOTA ideal lattice plus tune advance error – a model of 
sensitivity to perturbation (eg, space charge tune shift) 

37 

Nonlinear 
insert 

µ tune advance 

“arc” 

IOTA Ring 

•  IOTA ideal lattice requires integer or half-integer tune advance between the exit of the nonlinear 
insert and its entrance (the arc section) to ensure integrability.  

•  Model the sensitivity to space charge tune shift by introducing a small non-integer tune   
     advance µ (equal in x and y) in the linear map of the arc. 
•  This gives a nonlinear one-turn map that can used to study the breakdown of integrability. 

M = A�1NRAOne-turn map (at NLI entrance): 

N = e�2⇡⌫:HN :Map for the nonlinear insert: 

R = e�2⇡µ:HR:Map for the arc: 

Courant-Snyder normalizing map: A

H
R

=
1

2
(p2

x

+ p2
y

+ x2 + y2)

nonlinear insert 
Hamiltonian 

generates isotropic 
phase advance R

N

H
N

=
1

2
(p2

x

+ p2
y

) + V (x, y)



 
 

Reliably computing dynamic aperture 
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~8K initial conditions (x,0,y,0) in a disk, showing agreement between two distinct chaos detection methods. 

T=1025 

orbit difference 
orbit difference 

Using FB Integration 

tune diffusion 
tune diffusion 

Using FMA 

T=65536 

nearly all 
chaotic orbits  
are lost 

DA boundary 
appears to be 
well-defined 

Number  
of turns 
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Tracking in the IOTA Lattice with Space Charge - 
Assumptions and Simulation Parameters 

Objective:  To understand the perturbative effects of space charge on the ideal integrable  
                   single-particle dynamics at weak-moderate space charge tune depression. 
 
•  Elements external to the nonlinear insert are sliced longitudinally and treated as symplectic 
      maps alternating with space charge momentum kicks (split-operator approach):  linear order. 

•  Space charge is included self-consistently throughout the lattice using the symplectic spectral 
      solver with a rectangular boundary of large aperture to emulate free-space boundary conditions. 
 
•  We consider a long, unbunched beam with zero energy spread to remain near the ideal  
      integrable working point. 
 
•  Quadrupole settings are retuned to provide nπ phase advance across the arc after including  
      the linearized space charge fields at the desired value of beam current (A. Romanov, [1]). 

•  Twiss functions with linearized space charge included must be appropriately matched to the  
      nonlinear insert.     See also [2]. 

[1] A. Romanov et al, THPOA23, NAPAC 2016.      [2] C. Hall et al, WEA4CO02, NAPAC 2016.   

 Lattice parameters:     τ = -0.4,   c = 0.01 m1/2,   µ0 = 0.30345,   L = 1.8 m,   ΔQx = ΔQy = -0.03 
 Beam parameters:     KE = 2.5 MeV,   I = 0.4113 mA,   <H> = 0.04,   εx,n = 0.12 µm,    εy,n = 0.28 µm 


